Ementa:
Princípios do planejamento de recursos hídricos, análise de séries temporais, técnicas de aprendizagem de máquina para recursos hídricos, mudanças climáticas, modelagem hidrológica (estocástica, conceitual e determinística), impactos de mudanças do uso da terra, conflitos pelo uso da água, uso racional da água, alocação de recursos hídricos.
Bibliografia:
Ahmed, S. S., Bali, R., Khan, H., Mohamed, H. I., & Sharma, S. K. (2021). Improved water resource management framework for water sustainability and security. Environmental Research, 201, 111527. https://doi.org/10.1016/J.ENVRES.2021.111527
Babel, M. S., Gupta, A. Das, & Nayak, D. K. (2005). A Model for Optimal Allocation of Water to Competing Demands. Water Resources Management, 19(6), 693–712. https://doi.org/10.1007/s11269-005-3282-4
Barría, P., Sandoval, I. B., Guzman, C., Chadwick, C., Alvarez-Garreton, C., Díaz-Vasconcellos, R., Ocampo-Melgar, A., & Fuster, R. (2021). Water allocation under climate change: A diagnosis of the Chilean system. Elementa: Science of the Anthropocene, 9(1), 00131. https://doi.org/10.1525/elementa.2020.00131
Behrouz, A., & Mahmood, J. (2007). Optimization Model for Allocating Water in a River Basin during a Drought. Journal of Irrigation and Drainage Engineering, 133(6), 559–572. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:6(559)
Chen, L., Chen, Z., Zhang, Y., Liu, Y., Osman, A. I., Farghali, M., Hua, J., Al-Fatesh, A., Ihara, I., Rooney, D. W., & Yap, P.-S. (2023). Artificial intelligence-based solutions for climate change: a review. Environmental Chemistry Letters, 21(5), 2525–2557. https://doi.org/10.1007/s10311-023-01617-y
Coron, L., Thirel, G., Delaigue, O., Perrin, C., & Andréassian, V. (2017). The suite of lumped GR hydrological models in an R package. Environmental Modelling & Software, 94, 166–171. https://doi.org/10.1016/J.ENVSOFT.2017.05.002
Dai, C., Qin, X. S., Chen, Y., & Guo, H. C. (2018). Dealing with equality and benefit for water allocation in a lake watershed: A Gini-coefficient based stochastic optimization approach. Journal of Hydrology, 561, 322–334. https://doi.org/10.1016/J.JHYDROL.2018.04.012
Danish, M. (2022). Artificial intelligence and machine learning in water resources engineering. 7, 3–14. https://doi.org/10.1016/B978-0-323-91910-4.00001-7
Delaigue, O., Brigode, P., Thirel, G., & Coron, L. (2023). airGRteaching: an open-source tool for teaching hydrological modeling with~R. Hydrology and Earth System Sciences, 27(17), 3293–3327. https://doi.org/10.5194/hess-27-3293-2023
Deng, L., Guo, S., Yin, J., Zeng, Y., & Chen, K. (2022). Multi-objective optimization of water resources allocation in Han River basin (China) integrating efficiency, equity and sustainability. Scientific Reports, 12(1), 798. https://doi.org/10.1038/s41598-021-04734-2
Ditthakit, P., Pinthong, S., Salaeh, N., Binnui, F., Khwanchum, L., Kuriqi, A., Khedher, K. M., & Pham, Q. B. (2021). Performance Evaluation of a Two-Parameters Monthly Rainfall-Runoff Model in the Southern Basin of Thailand. Water, 13(9). https://doi.org/10.3390/w13091226
Ditthakit, P., Pinthong, S., Salaeh, N., Weekaew, J., Thanh Tran, T., & Bao Pham, Q. (2023). Comparative study of machine learning methods and GR2M model for monthly runoff prediction. Ain Shams Engineering Journal, 14(4), 101941. https://doi.org/10.1016/J.ASEJ.2022.101941
Dong, Z., Zhang, J., Zhang, K., Wang, X., & Chen, T. (2022). Multi-objective optimal water resources allocation in the middle and upper reaches of the Huaihe River Basin (China) based on equilibrium theory. Scientific Reports, 12(1), 6606. https://doi.org/10.1038/s41598-022-10599-w
Ghobadi, F., & Kang, D. (2023). Application of Machine Learning in Water Resources Management: A Systematic Literature Review. Water, 15(4). https://doi.org/10.3390/w15040620
Han, Q., Tan, G., Fu, X., Mei, Y., & Yang, Z. (2018). Water Resource Optimal Allocation Based on Multi-Agent Game Theory of HanJiang River Basin. Water, 10(9). https://doi.org/10.3390/w10091184
He, H., Chen, A., Yin, M., Ma, Z., You, J., Xie, X., Wang, Z., & An, Q. (2019). Optimal Allocation Model of Water Resources Based on the Prospect Theory. Water, 11(6). https://doi.org/10.3390/w11061289
Jacobs, J. M., & Vogel, R. M. (1998). Optimal Allocation of Water Withdrawals in a River Basin. Journal of Water Resources Planning and Management, 124(6), 357–363. https://doi.org/10.1061/(ASCE)0733-9496(1998)124:6(357)
Loucks, Daniel P.; van Beek, Eelco; Stedinger, Jery R.; Dijkman, Jozef P.M.; Villars, M. T. (2017). Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications (S. Deltares, UNESCO-IHE, Ed.). Deltares, UNESCO-IHE Institute for Water Education.
Mendez, M., Calvo-Valverde, L.-A., Imbach, P., Maathuis, B., Hein-Grigg, D., Hidalgo-Madriz, J.-A., & Alvarado-Gamboa, L.-F. (2022). Hydrological Response of Tropical Catchments to Climate Change as Modeled by the GR2M Model: A Case Study in Costa Rica. Sustainability, 14(24). https://doi.org/10.3390/su142416938
M
Ano de Catálogo: 2025
Créditos: 2
Número mínimo de alunos: 2
Idioma de oferecimento: Português
Tipo Oferecimento: Regular
Local Oferecimento:
Horários/Salas:
Docentes:
Reservas:
Não possui reservas.Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
---|---|---|---|---|---|---|
07:00 | ||||||
08:00 | ||||||
09:00 | ||||||
10:00 | ||||||
11:00 | ||||||
12:00 | ||||||
13:00 | ||||||
14:00 | A - LI309 | |||||
15:00 | A - LI309 | |||||
16:00 | ||||||
17:00 | ||||||
18:00 | ||||||
19:00 | ||||||
20:00 | ||||||
21:00 | ||||||
22:00 | ||||||
23:00 |