Ementa:
Números complexos. Funções analíticas. Séries. Integração complexa. Teorema de Cauchy. Teorema de Liouville. Princípio do módulo máximo. Resíduos. Desenvolvimento em Séries de Taylor e Laurent. Funções harmônicas. Fórmula de Poisson. Teorema de Range. Teorema da Aplicação de Riemann.
Bibliografia:
(1) L.Ahlfors, Complex Analysis, McGraw-Hill, 1966.(2) J.Conway, Functions of One Complex Variable I, Springer, 1978.(3) J.Mujica, Notas de Variável Complexa, 2008.(4) W.Rudin, Real and Complex Analysis, McGraw-Hill,1966.
Ano de Catálogo: 2024
Créditos: 4
Número mínimo de alunos: 1
Idioma de oferecimento: Português
Tipo Oferecimento: Regular
Local Oferecimento:
Horários/Salas:
Docentes:
Reservas:
Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
---|---|---|---|---|---|---|
07:00 | ||||||
08:00 | ||||||
09:00 | ||||||
10:00 | ||||||
11:00 | ||||||
12:00 | ||||||
13:00 | ||||||
14:00 | ||||||
15:00 | ||||||
16:00 | A - | A - | ||||
17:00 | A - | A - | ||||
18:00 | ||||||
19:00 | ||||||
20:00 | ||||||
21:00 | ||||||
22:00 | ||||||
23:00 |