Ementa:
Introdução e Motivação. Base Biológica: Aspectos Funcionais e Organizacionais. Fundamentos Básicos de Álgebra Linear e Otimização. Redes Neurais Não-Recorrentes. Redes Neurais Recorrentes. Mapas Auto-Organizáveis e Aprendizado Não-Supervisionado. Regularização e outras máquinas de aprendizado. Deep Learning: Otimização não-linear e funções-custo, Redes Convolucionais, Dropout, Bloco Long Short Term Memory (LSTM), Aprendizado da Representação, Manifolds, Autoencoders, Restricted Boltzmann Machines, Processamento de Linguagem Natural, Modelos de Atenção, Redes Adversárias Generativas, Interpretação da Rede Neural Treinada, Aprendizado por Reforço.
Bibliografia:
Bishop, C.M. (2007) “Pattern Recognition and Machine Learning”, Springer, ISBN: 0387310738. Géron, A. (2019) “Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow”, O’Reilly, 2nd edition, ISBN: 978-1492032649. Goodfellow, I.; Bengio, Y. & Courville, A. (2016) “Deep Learning”, The MIT Press, ISBN-13: 978-0262035613. Haykin, S. (2008) “Neural Networks and Learning Machines”, 3rd edition, Prentice Hall, ISBN: 0131471392. Kohonen, T. (2000) “Self-Organizing Maps”, 3rd Edition, Springer, ISBN: 3540679219.
Ano de Catálogo: 2024
Créditos: 4
Número mínimo de alunos: 5
Número de alunos matriculados: 35
Idioma de oferecimento: Português
Tipo Oferecimento: Regular
Local Oferecimento:
Horários/Salas:
Docentes:
Reservas:
Não possui reservas.Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
---|---|---|---|---|---|---|
07:00 | ||||||
08:00 | ||||||
09:00 | ||||||
10:00 | ||||||
11:00 | ||||||
12:00 | ||||||
13:00 | ||||||
14:00 | ||||||
15:00 | ||||||
16:00 | A - PE37 | A - PE37 | ||||
17:00 | A - PE37 | A - PE37 | ||||
18:00 | ||||||
19:00 | ||||||
20:00 | ||||||
21:00 | ||||||
22:00 | ||||||
23:00 |