Ementa:
Introdução: Integral de Riemann vs. Integral de Lebesgue. Medidas e integração de funções simples. Integração. Extensão de Lebesgue. Conjuntos mesuráveis. Funções mesuráveis. Funções integráveis. Propriedades da integral. Convergência. Teorema de Fubini, Os espaços Lp. Medidas com sinal e teorema de Radon Nikodvm. Convergência em medida.
Bibliografia:
Cohn, D.L. (1980) "Measure Theory''. Billingsley, P. (1986) "Probability and Measure''. Halmos, P.R. (1950) "Measure Theory''.
Ano de Catálogo: 2023
Créditos: 4
Número mínimo de alunos: 1
Número de alunos matriculados: 4
Idioma de oferecimento: Português
Tipo Oferecimento: Regular
Local Oferecimento:
Horários/Salas:
Docentes:
Reservas:
Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
---|---|---|---|---|---|---|
07:00 | ||||||
08:00 | ||||||
09:00 | ||||||
10:00 | A - IM32 | A - IM32 | ||||
11:00 | A - IM32 | A - IM32 | ||||
12:00 | ||||||
13:00 | ||||||
14:00 | ||||||
15:00 | ||||||
16:00 | ||||||
17:00 | ||||||
18:00 | ||||||
19:00 | ||||||
20:00 | ||||||
21:00 | ||||||
22:00 | ||||||
23:00 |