Ementa:
Módulos, anéis, álgebras (sobre um corpo). Módulos irredituveis, semissimples, indecomponíveis. Série de decomposição. Teorema de Jordan e Holder. Anéis primos e semi-primos, radical de Baer e caracterizações. Radical de Jacobson. Ideais unilaterais maximais. Propriedades do radical de Jacobson. Densidade e aplicações. Anéis primitivos, propriedades. Anéis semissimples. Teorema de Wedderburn e Artin. Aplicações. Anéis simples. Módulos e anéis Noetherianos e Artinianos. Propriedades e aplicações. Módulos injetivos e projetivos. Álgebras de dimensão finita. Álgebras simples. Álgebras centrais simples. Grupo de Brauer. Álgebras com divisão. O grupo de Brauer dos racionais. Teorema de Skolem e Noether e aplicações. Teorema de Frobenius sobre as álgebras de divisão reais. Grupos de matrizes. Finitude de grupos de matrizes. Teoremas de Burnside. Módulos e álgebras livres, propriedades genéricas. Álgebras nil e nilpotentes, problemas de tipo Burnside. Teorema de Golod e Shavarevich.
Ano de Catálogo: 2022
Créditos: 4
Número de alunos matriculados: 6
Idioma de oferecimento: Português
Horários/Salas:
Docentes:
Reservas:
Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
---|---|---|---|---|---|---|
07:00 | ||||||
08:00 | A - IM24 | A - IM24 | ||||
09:00 | A - IM24 | A - IM24 | ||||
10:00 | ||||||
11:00 | ||||||
12:00 | ||||||
13:00 | ||||||
14:00 | ||||||
15:00 | ||||||
16:00 | ||||||
17:00 | ||||||
18:00 | ||||||
19:00 | ||||||
20:00 | ||||||
21:00 | ||||||
22:00 | ||||||
23:00 |