Ementa:
Teoria de Existência e Unicidade. Método das aproximações sucessivas para existência e unicidade de soluções. Teorema de Peano de existência de soluções. Soluções maximais, fluxos. Sistemas lineares e suas soluções maximais. Dependência diferenciável de soluções em relação a parâmetros e a condições iniciais. Diferencial do fluxo. Teoremas de fluxo tubular. Campos completos. Colchetes de Lie de campos de vetores. Espaço de fase. Classificação das órbitas. Teorema de Hartman-Grobmann. Estabilidade de Lyapunov, funções de Lyapunov e expoentes de Lyapunov. Teorema de Poincaré-Bendixon. Campos conservativos. Recorrência e teorema de recorrência de Poincaré.
Número de alunos matriculados: 25
Idioma de oferecimento: Português
Horários/Salas:
Docentes:
Reservas:
Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
---|---|---|---|---|---|---|
07:00 | ||||||
08:00 | A - PB01 | A - PB01 | ||||
09:00 | A - PB01 | A - PB01 | ||||
10:00 | ||||||
11:00 | ||||||
12:00 | ||||||
13:00 | ||||||
14:00 | ||||||
15:00 | ||||||
16:00 | ||||||
17:00 | ||||||
18:00 | ||||||
19:00 | ||||||
20:00 | ||||||
21:00 | ||||||
22:00 | ||||||
23:00 |